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Abstract: The reaction COWM of biraakals, O=Cr-(CH&2-CfPh2. generated from Norrish type I 
reaction of 2,2-dtphenylcycloakanones with various ring sizes, IS switched from intramolecular dispro- 
portionahon (n=6.7) to acyl-phenyl recombination (r&J in methanol. 

Norrish type I (photochemical a-cleavage) reactions of cyclic ketones usually proceed from ketone triplets 
to generate triplet biradicals, which afford, after intersystem crossing, disproportionation and/or cyclization prcd- 
ucts,lz and much attention has been focused on the nature of intersystem crossing and chain dynamics of bimdi- 
cals.3 Among the triplet biradicals, 0=Cf-(CH2)n-2-CtPhz, generated from a-cleavage of n-membered 2,2- 
diphenylcycloalkanones (CK-n), those from 2,2-diphenylcyclohexanone give exclusively an unsaturated alde- 
hyde (A-6), as reported previously.2 Herein we wish to report switching of the reaction courses of this series of 
triplet biradicals depending upon the chain length R and the role of intermediate methylenecyclohaxadienyl 
ketones in the reaction course. 

Irradiation of 2,2diphenylcycloheptanone (CK-7) with 313-nm light in methanol gave exclusively an 
unsaturated aldehyde (A-7) in 76% yield, but neither cyclophane-type products nor methyl ester (E-n) was 
detecta the photochemical behavior is very similar to that of CK-6. However, 2,2diphenylcyclododecanone 
(CK- 12) and 2,2diphenylcyclotridecanone (CK- 13) afforded paracyclophanyl ketones (PC-n, n =12 and 13; 50 
and 27% yield, respectively) together with decarbonylated cyclophanes (PH-n, II =12 and 13; 27 and 37%, 
respectively); there are no significant amounts of aldehydes (A-n). 

As previously reported for CK-6,2 the a-cleavage of CK-n takes place in the triplet state to generate triplet 
biradicals (SBR-n), which lead to products by way of intersystem crossing to the corresponding singlet biradicals 
(*BR-n). Intramolecular hydrogen transfer (disproportionation) in lBR-7 gives A-7, and cyclization between the 
acyl and phenyl groups followed by proton shift in the resulting methylenecyclohexadienyl ketone, P-n. gives 
PC-n, where n is 12 or 13. Thus, the reaction course is very much different between CK-n with a smaller ring 
size and those with a larger ring size. The reaction processes are proposed in Scheme 1. 

The photochemistry of CK-9 and CK- 11 is rather complicate but informative. Prolonged irradiation of 
CK-9 with 313-nm light in methanol afforded an open-chain (L-9; 23%) and a cyclic decarbonylation product (C- 
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9; 33%) together with aldehyde A-9 (31%); however, work-up of the sample solution at early stages gave a 
methylenecyclohexadienyl ketone (P-9) and A-9. The quantum yield for CK-9 disappearance was 0.39 at low 
conversion. Time development of products monitored by HPLC during the photolysis of CK-9 indicated that, as 
the starting ketone is consumed, P-9 is rapidly formed in the early stage but decreases with time, and that other 
products, A-9, C-9, and L-9, increase slowly (Fig. 1). Moreover, photolysis with 313-nm light in methanol of 
the isolated P-95 gave A-9, C-9, and L-9 in a similar ratio (Fig. 2).6 These results indicate that lBR-9 derived 
from CK-9 through 3BR-9 competitively undergoes acyldiphenylmethyl recombination (cyclization) returning to 
the starting ketone and acyl-phenyl recombination (pre-cyclophane formation) giving P-9, which is, however, so 
photolabile as to gtve rise to the secondary products under the reaction conditions (Scheme 1; &I). 

h Ph, 
ph,C=CH-(CH2)d-CH=0 

A-n pye 11-m’ 2n-4 2 n-4 

Ph, 
ph,CWW),rC02Me 

E-n 

Ph Ph 

;>=CH-(CH,),-CH. 

L-n n 
C_n (WL-6 

Similar studies on CK-11 indicate that P-11 is the primary product, and thermally converted to PC-11 or 
photolyzedintoPH-ll,A-11,andGll. 7,8 Prolonged irradiation of CK-11 afforded PC-l 1 (74%) and PH-11 
(14%) together with small amounts of A-l 1 and L-l 1. The quantum yield for CK-11 disappearance was 0.36 at 
low conversion. The present results show that the reaction course of CK-n is switched at n=9 from intramolecu- 
lar hydrogen transfer to acyl-phenyl recombination, and that the decarbonylation products and A-n (na) are 
formed as secondary products from photolysis of the primary product, P-n.9 

Behavior of the triplet biradicals was directly observed by means of laser flash photolysis of CK-n.10.11 
As shown in Fig. 3, pulsed laser excitation of CK-9 at 308 nm in methanol exhibited an absorption band with a 
lifetime of 123 ns around 335 nm due to the corresponding triplet biradical. All the ketones CK-n employed in 
this work exhibited similar transient absorptions with lifetimes of ca. 100 ns under similar conditions, and the 
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Fig. 1. Time Development of CK-9 Disappearance 
and Product Formation. The ordinate is relative 

Fig. 2. Time Development of P-9 Disappearance and 

peak area of HPLC chart monitored at 260 nm. 
Product Formation. The ordinate is relative peak 

area of HPLC chart monitored at 260 nm. 
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Fig. 3. Transient absorption spectra observed on 308- 
nm laser excitation of CK-9 in methanol. 

Fig. 4. Transient absorption spectra observed on 308- 
nm laser excitation of P-9 in methanol. 
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transient absorptions can be ascribed to the corresponding triplet biradicals.2 In Fig. 3 a new absorption band 
grows up in the shorter wavelength region. This band is ascribed to a permanent product, P-9. The isolated P-9 
also exhibited a transient absorption similar to the 335nm band from CK-9 in the spectral shape and lifetime (130 
ns. Fig. 4). These observations indicate that photolysis of P-9 generates the same intermediate as the biradical 
from CK-9. 

The lifetime of triplet biradicals 3BR-n (n=6,7,9. 11-13) depends on the chain length n. and shows a 
maximum at n=9,3BR-9. This feature is in good agreement with the reactivity profile of cyclixation reactions of 
chain molecules with two reaction centers at each end, the cycliration is less effkient for molecules of the chain 
length of 8 to 10 compared to those of shorter and longer chain lengths (difficulty in medium-sized ring clo- 
sure).l* These results indicate that the intersystem crossing takes place predominantly in the cyclic conformers 
preferable for product formation, since the lifetime of 3BR-n is governed by intersystem crossing to tBR-n *due 
to dominant spin-orbit coupling.3 and under the present reaction conditions 3BR-n is in conformational equilib- 
rium among various conformers. Therefore. the switching of reaction courses means that the most favorable 
conformation for inter-system crossing is different between short-chain and long-chain biradicals. 
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It is concluded that photolysis of CK-n gives the aldehyde through disptoportionation of biradical interme- 
diates when the ring size of CK-n is as small as 6 or 7, and, when the ring size is as large as 9 through 13, the 
biradicals cyclize mainly at the phenyl group to give the methylenecyclohexadienyl ketones. The intersystem 
crossing of the triplet biradicals takes place in their cyclic conformations that are favorable for giving cyclizauon 
or disproportionation products in the singlet biradicals. 
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